List of hyperaccumulators

This article covers known hyperaccumulators, accumulators or species tolerant to the following: Aluminium (Al), Silver (Ag), Arsenic (As), Beryllium (Be), Chromium (Cr), Copper (Cu), Manganese (Mn), Mercury (Hg), Molybdenum (Mo), Naphthalene, Lead (Pb), Palladium (Pd), Platinum (Pt), Selenium (Se) et Zinc (Zn).

See also:

Hyperaccumulators table – 1

hyperaccumulators and contaminants : Al, Ag, As, Be, Cr, Cu, Mn, Hg, Mo, naphthalene, Pb, Pd, Pt, Se, Zn – accumulation rates
Contaminant Accumulation rates (in mg/kg dry weight) Latin name English name H-Hyperaccumulator or A-Accumulator P-Precipitator T-Tolerant Notes Sources
Al-Aluminium A- Agrostis castellana Highland Bent Grass As(A), Mn(A), Pb(A), Zn(A) Origin Portugal. [1]
Al - Aluminium 1000 Hordeum vulgare Barley xxx 25 records of plants. [2][3]
Al - Aluminium xxx Hydrangea spp. Hydrangea (a.k.a. Hortensia) xxx xxx xxx
Al - Aluminium Al concentrations in young leaves, mature leaves, old leaves, and roots were found to be 8.0, 9.2, 14.4, and 10.1 mg g1, respectively.[4] Melastoma malabathricum L. Blue Tongue, or Native Lassiandra P competes with aluminium and reduces uptake.[5] xxx
Al-Aluminium xxx Solidago hispida (Solidago canadensis L.) Hairy Goldenrod xxx Origin Canada. [2][3]
Al-Aluminium 100 Vicia faba Horse Bean xxx xxx [2][3]
Ag-Silver xxx Brassica napus Rapeseed plant Cr, Hg, Pb, Se, Zn Phytoextraction [6][7]
Ag-Silver xxx Salix spp. Osier spp. Cr, Hg, Se, Petroleum hydrocarbures, Organic solvents, MTBE, TCE and by-products;[7] Cd, Pb, U, Zn (S. viminalix);[8] Potassium ferrocyanide (S. babylonica L.)[9] Phytoextraction. Perchlorate (wetland halophytes) [7]
Ag-Silver xxx Amanita strobiliformis European Pine Cone Lepidella Ag(H) Macrofungi, Basidiomycete. Known from Europe, prefers calcareous areas [10]
Ag-Silver 10-1200 Brassica juncea Indian Mustard Ag(H) Can form alloys of silver-gold-copper [11]
As-Arsenic 100 Agrostis capillaris L. Common Bent Grass, Browntop. (= A. tenuris) Al(A), Mn(A), Pb(A), Zn(A) xxx [3]
As-Arsenic H- 'Agrostis castellana Highland Bent Grass Al(A), Mn(A), Pb(A), Zn(A) Origin Portugal. [1]
As-Arsenic 1000 Agrostis tenerrima Trin. Colonial bentgrass xxx 4 records of plants [3][12]
As-Arsenic 27,000 (fronds)[13] Pteris vittata L. Ladder brake fern or Chinese brake fern 26% of arsenic in the soil removed after 20 weeks' plantation, about 90% As accumulated in fronds.[14] Root extracts reduce arsenate to arsenite.[15] xxx
As-Arsenic 100-7000 Sarcosphaera coronaria No common name As(H) Ectomycorrhizal ascomycete, known from Europe Stijve et al., 1990, in Persoonia 14(2): 161-166, Borovička 2004 in Mykologický Sborník 81: 97-99.
Be-Beryllium xxx xxx xxx xxx No reports found for accumulation [3]
Cr-Chromium xxx Azolla spp. xxx xxx xxx [3][16]
Cr-Chromium H- Bacopa monnieri Smooth Water Hyssop Cd(H), Cu(H), Hg(A), Pb(A) Origin India. Aquatic emergent species. [1][17]
Cr-Chromium xxx Brassica juncea L. Indian mustard Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A), Zn(H) Cultivated in agriculture. [1][7][18]
Cr-Chromium xxx Brassica napus Rapeseed plant Ag, Hg, Pb, Se, Zn Phytoextraction [6][7]
Cr-Chromium A- Vallisneria americana Tape Grass Cd(H), Pb(H) Native to Europe and North Africa. Widely cultivated in the aquarium trade. [1]
Cr-Chromium 1000 Dicoma niccolifera xxx xxx 35 records of plants [3]
Cr-Chromium roots naturally absorb pollutants, some organic compounds believed to be carcinogenic,[19] in concentrations 10,000 times that in the surrounding water.[20] Eichhornia crassipes Water Hyacinth Cd(H), Cu(A), Hg(H),[19] Pb(H),[19] Zn(A). Also Cs, Sr, U,[19][21] and pesticides.[22] Pantropical/Subtropical. Plants sprayed with 2,4-D may accumulate lethal doses of nitrates.[23] 'The troublesome weed' – hence an excellent source of bioenergy.[19] [1]
Cr-Chromium xxx Helianthus annuus Sunflower xxx Phytoextraction et rhizofiltration [1][7]
Cr A- Hydrilla verticillata Hydrilla Cd(H) Hg(H), Pb(H) xxx [1]
Cr-Chromium xxx Medicago sativa Alfalfa xxx xxx [3][24]
Cr-Chromium xxx Pistia stratiotes Water lettuce Cd(T), Hg(H), Cr(H), Cu(T) xxx [1][3][25]
Cr-Chromium xxx Salix spp. Osier spp. Ag, Hg, Se, Petroleum hydrocarbures, Organic solvents, MTBE, TCE and by-products;[7] Cd, Pb, U, Zn (S. viminalix);[8] Potassium ferrocyanide (S. babylonica L.)[9] Phytoextraction. Perchlorate (wetland halophytes) [7]
Cr-Chromium xxx Salvinia molesta Kariba weeds or water ferns Cr(H), Ni(H), Pb(H), Zn(A) xxx [1][3][26]
Cr-Chromium xxx Spirodela polyrhiza Giant Duckweed Cd(H), Ni(H), Pb(H), Zn(A) Native to North America. [1][3][26]
Cr-Chromium 100 Sutera fodina xxx xxx xxx [3][27][28]
Cr-Chromium A- Thlaspi caerulescens xxx Cd(H), Co(H), Cu(H), Mo, Ni(H), Pb(H), Zn(H) Phytoextraction. [['T. caerulescens may acidify its rhizosphere, which would affect metal uptake by increasing available metals[29] [1][3][7][30][31][32]
Cu-Copper 9000 Aeolanthus biformifolius xxx xxx xxx [33]
Cu-Copper xxx Athyrium yokoscense (Japanese false spleenwort?) Cd(A), Pb(H), Zn(H) Origin Japan. [1]
Cu-Copper A- Azolla filiculoides Pacific mosquitofern Ni(A), Pb(A), Mn(A) Origin Africa. Floating plant. [1]
Cu-Copper H- Bacopa monnieri Smooth Water Hyssop Cd(H), Cr(H), Hg(A), Pb(A) Origin India. Aquatic emergent species. [1][17]
Cu-Copper xxx Brassica juncea L. Indian mustard Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A), Zn(H) cultivated [1][7][18]
Cu-Copper H- Callisneria Americana Tape Grass Cd(H), Cr(A), Pb(H) Native to Europe and North Africa. Widely cultivated in the aquarium trade. [1]
Cu-Copper xxx Eichhornia crassipes Water Hyacinth Cd(H), Cr(A), Hg(H), Pb(H), Zn(A), Also Cs, Sr, U,[21] and pesticides.[22] Pantropical/Subtropical, 'the troublesome weed'. [1]
Cu-Copper 1000 Haumaniustrum robertii Copper flower xxx 27 records of plants. Origin Africa. This species' phanerogam has the highest cobalt content. Its distribution could be governed by cobalt rather than copper.[34] [3][31]
Cu-Copper xxx Helianthus annuus Sunflower xxx Phytoextraction with rhizofiltration [1][31]
Cu-Copper 1000 Larrea tridentata Creosote Bush xxx 67 records of plants. Origin U.S. [3][31]
Cu-Copper H- Lemna minor Duckweed Pb(H), Cd(H), Zn(A) Native to North America and widespread worldwide. [1]
Cu-Copper T- Pistia stratiotes Water Lettuce Cd(T), Hg(H), Cr(H) Pantropical. Origin South U.S.A. Aquatic herb. [1]
Cu-Copper xxx Thlaspi caerulescens Alpine pennycress Cd(H), Cr(A), Co(H), Mo, Ni(H), Pb(H), Zn(H) Phytoextraction. Copper noticeably limits its growth.[32] [1][3][7][29][30][31][32]
Mn-Manganese A- 'Agrostis castellana Highland Bent Grass Al(A), As(A), Pb(A), Zn(A) Origin Portugal. [1]
Mn-Manganese xxx Azolla filiculoides Pacific mosquitofern Cu(A), Ni(A), Pb(A) Origin Africa. Floating plant. [1]
Mn-Manganese xxx Brassica juncea L. Indian mustard xxx xxx [7][18]
Mn-Manganese xxx Helianthus annuus Sunflower xxx Phytoextraction et rhizofiltration [7]
Mn-Manganese 1000 Macademia neurophylla xxx xxx 28 records of plants [3][35]
Mn-Manganese 200 xxx xxx xxx xxx [3]
Hg-Mercury A- Bacopa monnieri Smooth Water Hyssop Cd(H), Cr(H), Cu(H), Hg(A), Pb(A) Origin India. Aquatic emergent species. [1][17]
Hg-Mercury xxx Brassica napus Rapeseed plant Ag, Cr, Pb, Se, Zn Phytoextraction [6][7]
Hg-Mercury xxx Eichhornia crassipes Water Hyacinth Cd(H), Cr(A), Cu(A), Pb(H), Zn(A)Also Cs, Sr, U,[21] and pesticides.[22] Pantropical/Subtropical, 'the troublesome weed'. [1]
Hg-Mercury H- Hydrilla verticillata Hydrilla Cd(H), Cr(A), Pb(H) xxx [1]
Hg-Mercury 1000 Pistia stratiotes Water lettuce Cd(T), Cr(H), Cu(T) 35 records of plants [1][3][31][36]
Hg-Mercury xxx Salix spp. Osier spp. Ag, Cr, Se, Petroleum hydrocarbures, Organic solvents, MTBE, TCE and by-products;[7] Cd, Pb, U, Zn (S. viminalix);[8] Potassium ferrocyanide (S. babylonica L.)[9] Phytoextraction. Perchlorate (wetland halophytes) [7]
Mo-molybdenum 1500 Thlaspi caerulescens (Brassica) Alpine pennycress Cd(H), Cr(A), Co(H), Cu(H), Ni(H), Pb(H), Zn(H) phytoextraction [1][3][7][29][30][31][32]
naphthalene xxx Festuca arundinacea Tall Fescue xxx Increases catabolic genes and the mineralization of naphthalene. [37]
naphthalene xxx Trifolium hirtum Pink clover xxx Decreases catabolic genes and the mineralization of naphthalene. [37]
Pb-Lead A- 'Agrostis castellana 'Highland Bent Grass Al(A), As(H), Mn(A), Zn(A) Origin Portugal. [1]
Pb-Lead xxx Ambrosia artemisiifolia Ragweed xxx xxx [6]
Pb-Lead xxx Armeria maritima Seapink Thrift xxx xxx [6]
Pb-Lead xxx Athyrium yokoscense (Japanese false spleenwort?) Cd(A), Cu(H), Zn(H) Origin Japan. [1]
Pb-Lead A- Azolla filiculoides Pacific mosquitofern Cu(A), Ni(A), Mn(A) Origin Africa. Floating plant. [1]
Pb-Lead A- Bacopa monnieri Smooth Water Hyssop Cd(H), Cr(H), Cu(H), Hg(A) Origin India. Aquatic emergent species. [1][17]
Pb-Lead H- Brassica juncea Indian mustard Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A), Zn(H) 79 recorded plants. Phytoextraction [1][3][6][7][18][29][31][32][38]
Pb-Lead xxx Brassica napus Rapeseed plant Ag, Cr, Hg, Se, Zn Phytoextraction [6][7]
Pb-Lead xxx Brassica oleracea Ornemental Kale et Cabbage, Broccoli xxx xxx [6]
Pb-Lead H- Callisneria Americana Tape Grass Cd(H), Cr(A), Cu(H) Native to Europe and North Africa. Widely cultivated in the aquarium trade. [1]
Pb-Lead xxx Eichhornia crassipes Water Hyacinth Cd(H), Cr(A), Cu(A), Hg(H), Zn(A). Also Cs, Sr, U,[21] and pesticides.[22] Pantropical/Subtropical, 'the troublesome weed'. [1]
Pb-Lead xxx Festuca ovina Blue Sheep Fescue xxx xxx [6]
Pb-Lead xxx Helianthus annuus Sunflower xxx Phytoextraction et rhizofiltration [1][6][7][8][38]
Pb-Lead H- Hydrilla verticillata Hydrilla Cd(H), Cr(A), Hg(H) xxx [1]
Pb-Lead H- Lemna minor Duckweed Cd(H), Cu(H), Zn(H) Native to North America and widespread worldwide. [1]
Pb-Lead xxx Salix viminalis Common Osier Cd, U, Zn;[8] Ag, Cr, Hg, Se, Petroleum hydrocarbures, Organic solvents, MTBE, TCE and by-products (S. spp.);[7] Potassium ferrocyanide (S. babylonica L.)[9] Phytoextraction. Perchlorate (wetland halophytes) [8]
Pb-Lead H- Salvinia molesta Kariba weeds or water ferns Cr(H), Ni(H), Pb(H), Zn(A) Origin India. [1]
Pb-Lead xxx Spirodela polyrhiza Giant Duckweed Cd(H), Cr(H), Ni(H), Zn(A) Native to North America. [1][3][26]
Pb-Lead xxx Thlaspi caerulescens (Brassica) Alpine pennycress Cd(H), Cr(A), Co(H), Cu(H), Mo(H), Ni(H), Zn(H) Phytoextraction. [1][3][7][29][30][31][32]
Pb-Lead xxx Thlaspi rotundifolium Round-leaved Pennycress xxx xxx [6]
Pb-Lead xxx Triticum aestivum Common Wheat xxx xxx [6]
Pb-Lead A-200 xxx xxx xxx xxx [3]
Pd-Palladium xxx xxx xxx xxx No reports found for accumulation. [3]
Pt-Platinum xxx xxx xxx xxx No reports found for accumulation. [3]
Se-Selenium .012-20 Amanita muscaria Fly agaric xxx Cap contains higher concentrations than stalks[39]
Se-Selenium xxx Brassica juncea Indian mustard xxx Rhizosphere bacteria enhance accumulation.[40] [7]
Se-Selenium xxx Brassica napus Rapeseed plant Ag, Cr, Hg, Pb, Zn Phytoextraction. [6][7]
Se-Selenium Low rates of Se volatilization from selenate-supplied Muskgrass (10-fold less than from selenite) may be due to a major rate limitation in the reduction of selenate to organic forms of Se in Muskgrass. Chara canescens Desv. & Lois Muskgrass xxx Muskgrass treated with selenite contains 91% of the total Se in organic forms (selenoethers and diselenides), compared with 47% in Muskgrass treated with selenate.[41] 1.9% of the total Se input is accumulated in its tissues; 0.5% is removed via biological volatilization.[42] [43]
Se-Selenium xxx Kochia scoparia xxx U,[8] Cr, Pb, Hg, Ag, Zn Perchlorate (wetland halophytes). Phytoextraction. [1][7]
Se-Selenium xxx Salix spp. Osier spp. Ag, Cr, Hg, Petroleum hydrocarbures, Organic solvents, MTBE, TCE and by-products;[7] Cd, Pb, U, Zn (S. viminalis);[8] Potassium ferrocyanide (S. babylonica L.)[9] Phytoextraction. Perchlorate (wetland halophytes). [7]
Zn-Zinc A- 'Agrostis castellana Highland Bent Grass Al(A), As(H), Mn(A), Pb(A) Origin Portugal. [1]
Zn-Zinc xxx Athyrium yokoscense (Japanese false spleenwort?) Cd(A), Cu(H), Pb(H) Origin Japan. [1]
Zn-Zinc xxx Brassicaeae xxx Hyperaccumulators: Cd, Cs, Ni, Sr Phytoextraction. [7]
Zn-Zinc xxx Brassica juncea L. Indian mustard Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A). Larvae of Pieris brassicae do not even sample its high-Zn leaves. (Pollard and Baker, 1997) [1][7][18]
Zn-Zinc xxx Brassica napus Rapeseed plant Ag, Cr, Hg, Pb, Se Phytoextraction [6][7]
Zn-Zinc xxx Helianthus annuus Sunflower xxx Phytoextraction et rhizofiltration. [7][8]
Zn-Zinc xxx Eichhornia crassipes Water Hyacinth Cd(H), Cr(A), Cu(A), Hg(H), Pb(H)Also Cs, Sr, U,[21] and pesticides.[22] Pantropical/Subtropical, 'the troublesome weed'. [1]
Zn-Zinc xxx Salix viminalis Common Osier Ag, Cr, Hg, Se, Petroleum hydrocarbons, Organic solvents, MTBE, TCE and by-products;[7] Cd, Pb, U (S. viminalis);[8] Potassium ferrocyanide (S. babylonica L.)[9] Phytoextraction. Perchlorate (wetland halophytes). [8]
Zn-Zinc A- Salvinia molesta Kariba weeds or water ferns Cr(H), Ni(H), Pb(H), Zn(A) Origin India. [1]
Zn-Zinc 1400 Silene vulgaris (Moench) Garcke (Caryophyllaceae) Bladder campion xxx xxx Ernst et al. (1990)
Zn-Zinc xxx Spirodela polyrhiza Giant Duckweed Cd(H), Cr(H), Ni(H), Pb(H) Native to North America. [1][3][26]
Zn-Zinc H-10,000 Thlaspi caerulescens (Brassica) Alpine pennycress Cd(H), Cr(A), Co(H), Cu(H), Mo, Ni(H), Pb(H) 48 records of plants. May acidify its own rhizosphere, which would facilitate absorption by solubilization of the metal[29] [1][3][7][30][31][32][38]
Zn-Zinc xxx Trifolium pratense Red Clover Nonmetal accumulator. Its rhizosphere is denser in bacteria than that of Thlaspi caerulescens, but T. caerulescens has relatively more metal-resistant bacteria.[29] xxx

Cs-137 activity was much smaller in leaves of larch and sycamore maple than of spruce: spruce > larch > sycamore maple.

References

  1. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax McCutcheon & Schnoor 2003, Phytoremediation. New Jersey, John Wiley & Sons, page 898.
  2. ^ a b c Grauer & Horst 1990
  3. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac McCutcheon & Schnoor 2003, Phytoremediation. New Jersey, John Wiley & Sons pg 891.
  4. ^ Toshihiro Watanabe, Mitsuru Osaki, Teruhiko Yoshihara and Toshiaki Tadano (April 1998). "Distribution and chemical speciation of aluminum in the Al accumulator plant, Melastoma malabathricum L.". Plant and Soil 201 (2): 165–173. doi:10.1023/A:1004341415878. http://www.springerlink.com/content/t7080538256p0303/. 
  5. ^ Warm Climate Production Guidelines for Japanese Hydrangeas. By Rick Shoellhorn and Alexis A. Richardson. Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Original publication date February 5, 2005.
  6. ^ a b c d e f g h i j k l m n A Resource Guide: The Phytoremediation of Lead to Urban, Residential Soils. Site adapted from a report from Northwestern University written by Joseph L. Fiegl, Bryan P. McDonnell, Jill A. Kostel, Mary E. Finster, and Dr. Kimberly Gray
  7. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag Phytoremediation. By McCutcheon & Schnoor. 2003, New Jersey, John Wiley & Sons pg 19.
  8. ^ a b c d e f g h i j k Ulrich Schmidt (2003). "Enhancing Phytoextraction: The Effect of Chemical Soil Manipulation on Mobility, Plant Accumulation, and Leaching of Heavy Metals". J. Environ. Qual. 32 (6): 1939–54. PMID 14674516. http://jeq.scijournals.org/cgi/content/abstract/32/6/1939. 
  9. ^ a b c d e f Yu XZ, Zhou PH, Yang YM (July 2006). "The potential for phytoremediation of iron cyanide complex by willows". Ecotoxicology 15 (5): 461–7. doi:10.1007/s10646-006-0081-5. PMID 16703454. 
  10. ^ Borovička J., Řanda Z., Jelínek E., Kotrba P., Dunn C.E. (2007). "Hyperaccumulation of silver by Amanita strobiliformis and related species of the section Lepidella". Mycological Research 111 (Pt 11): 1339–44. doi:10.1016/j.mycres.2007.08.015. PMID 18023163. 
  11. ^ R.G. Haverkamp and A.T. Marshall and D. van Agterveld (2007). "Pick your Carats: Nanoparticles of Gold-Silver-Copper Alloy Produced In Vivo". J. Nanoparticle Res. 9: 697–700. doi:10.1007/s11051-006-9198-y. 
  12. ^ Porter and Peterson 1975
  13. ^ Junru Wang, Fang-Jie Zhao, Andrew A. Meharg, Andrea Raab, Joerg Feldmann and Steve P. McGrath (November 2002). "Mechanisms of Arsenic Hyperaccumulation in Pteris vittata. Uptake Kinetics, Interactions with Phosphate, and Arsenic Speciation". Plant Physiol 130 (3): 1552–61. doi:10.1104/pp.008185. PMC 166674. PMID 12428020. http://www.plantphysiol.org/cgi/content/full/130/3/1552.  18 days' hydroponic experiment with varying concentrations of arsenate and P. Within 8 h, 50% to 78% of the As taken up is distributed to the fronds, which take from 1.3 to 6.7 times more As than the roots do. No P for 8 days increases the arsenate's maximum net influx by 2.5-fold; the plants then absorbs 10 times more arsenate than arsenite. If on the other hand the P supply is increased, As uptake decreases - with a greater effect on the roots than on the shoots. More arsenate decreases the P concentration in the roots, but not in the fronds. P in the uptake solution markedly decreases arsenate uptake. The presence or absence of P does not affect the uptake of arsenite, which translocates more easily than arsenate.
  14. ^ C. Tu, L.Q. Ma and B. Bondada. Arsenic Accumulation in the Hyperaccumulator Chinese Brake and Its Utilization Potential for Phytoremediation. 31. http://jeq.scijournals.org/cgi/content/abstract/31/5/1671. 
  15. ^ Gui-Lan Duan, Y.-G. Zhu, Y.-P. Tong, C. Cai and R. Kneer (2005). "Characterization of Arsenate Reductase in the Extract of Roots and Fronds of Chinese Brake Fern, an Arsenic Hyperaccumulator". Plant Physiology 138 (1): 461–9. doi:10.1104/pp.104.057422. PMC 1104199. PMID 15834011. http://www.plantphysiol.org/cgi/content/abstract/138/1/461.  Yeast (Saccharomyces c.) has an arsenate reductase, Acr2p, that uses glutathione as the electron donor. Pteris vittata has an arsenate reductase with the same reaction mechanism, and the same substrate specificity and sensitivity toward inhibitors (P as a competitive inhibitor, arsenite as a noncompetitive inhibitor).
  16. ^ Priel 1995.
  17. ^ a b c d Gurta et al. 1994
  18. ^ a b c d e L.E. Bennetta, J.L. Burkheada, K.L. Halea, N. Terry, M. Pilona and E.A. H. Pilon-Smits. Analysis of Transgenic Indian Mustard Plants for Phytoremediation of Metal-Contaminated Mine Tailings. 32. http://jeq.scijournals.org/cgi/content/abstract/32/2/432. 
  19. ^ a b c d e Handbook of Energy Crops. By J. Duke. Available only online. An excellent source of information on numerous plants.
  20. ^ BioScience 26 (3): 224. 1976. 
  21. ^ a b c d e Phytoremediation of radionuclides.
  22. ^ a b c d e J.K. Lan (March 2004). "Recent developments of phytoremediation". J. Geol. Hazards Environ. Preserv. 15 (1): 46–51. http://md1.csa.com/partners/viewrecord.php?requester=gs&collection=ENV&recid=6028544&q=&uid=788532439&setcookie=yes. 
  23. ^ Tropical feeds. Feed information summaries and nutritive values. By B. Gohl. 1981. FAO Animal Production and Health Series 12. FAO, Rome. Cited in Handbook of Energy Crops. By J. Duke.
  24. ^ Tiemmann et al. 1994
  25. ^ Sen et al. 1987
  26. ^ a b c d Srivastav 1994
  27. ^ Wild 1974
  28. ^ Brooks & Yang 1984
  29. ^ a b c d e f g T.A. Delorme, J.V. Gagliardi, J.S. Angle and R.L. Chaney (2001). "Influence of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl. and the nonmetal accumulator Trifolium pratense L. on soil microbial populations". Can. J. Microbiol. 47 (8): 773–6. doi:10.1139/cjm-47-8-773. PMID 11575505. http://pubs.nrc-cnrc.gc.ca/cgi-bin/rp/rp2_abst_e?cjm_w01-067_47_ns_nf_cjm47-01. 
  30. ^ a b c d e Majeti Narasimha Vara Prasad (Jan/Mar 2005). "Nickelophilous plants and their significance in phytotechnologies". Braz. J. Plant Physiol. 17 (1). http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1677-04202005000100010. 
  31. ^ a b c d e f g h i j Baker & Brooks, 1989
  32. ^ a b c d e f g E. Lombi, F.J. Zhao, S.J. Dunham et S.P. McGrath (2001). "Phytoremediation of Heavy Metal, Contaminated Soils, Natural Hyperaccumulation versus Chemically Enhanced Phytoextraction". Journal of Environmental Quality 30 (6): 1919–26. PMID 11789997. http://jeq.scijournals.org/cgi/content/abstract/30/6/1919. 
  33. ^ R.S. Morrison, R.R. Brooks, R.D. Reeves and F. Malaisse (December 1979). "Copper and cobalt uptake by metallophytes from Zaïre". Plant and Soil 53 (4). http://www.springerlink.com/content/v51188t510jh4112/. 
  34. ^ R. R. Brooks. Copper and cobalt uptake by Haumaniustrum species. http://www.springerlink.com/content/m4145xq643407642/. 
  35. ^ Baker & Walker 1990
  36. ^ Atri 1983
  37. ^ a b S.D. Siciliano, J.J. Germida, K. Banks and C. W. Greer (January 2003). "Changes in Microbial Community Composition and Function during a Polyaromatic Hydrocarbon Phytoremediation Field Trial". Applied and Environmental Microbiology 69 (1): 483–9. doi:10.1128/AEM.69.1.483-489.2003. PMC 152433. PMID 12514031. http://aem.asm.org/cgi/content/abstract/69/1/483. 
  38. ^ a b c Phytoremediation Decision Tree, ITRC
  39. ^ T. Stijve (September 1977). "Selenium content of mushrooms". Zeitschrift für Lebensmitteluntersuchung und -Forschung A 164 (3): 201–3. doi:10.1007/BF01263031. http://www.springerlink.com/content/p210006717p20753/. 
  40. ^ Mark P. de Souza, Dara Chu, May Zhao, Adel M. Zayed, Steven E. Ruzin, Denise Schichnes, and Norman Terry (1999). "Rhizosphere Bacteria Enhance Selenium Accumulation and Volatilization by Indian mustard". Plant Physiol. 119 (2): 565–574. doi:10.1104/pp.119.2.565. PMC 32133. PMID 9952452. http://www.plantphysiol.org/cgi/content/abstract/119/2/565. 
  41. ^ X-ray absorption spectroscopy speciation analysis.
  42. ^ Average Se concentration of 22 µg L-1 supplied over a 24-d experimental period.
  43. ^ Z.-Q. Lin, M.P. de Souza, I. J. Pickering and N. Terry (2002). "Evaluation of the Macroalga, Muskgrass, for the Phytoremediation of Selenium-Contaminated Agricultural Drainage Water by Microcosms". Journal of Environmental Quality 31 (6): 2104–10. doi:10.2134/jeq2002.2104. PMID 12469862. http://jeq.scijournals.org/cgi/content/full/31/6/2104.